
44 AMAZING COMPUTING

This month’s program is a handy and ingenious ARexx macro
for Directory Opus (DOpus) that allows you to view the contents of
LHA or LZH compressed archives and select which files/directo-
ries you want to decompress, using only mouse clicks. I am not the
author of the macro, but I did correct a few errors in the version
given me by a friend who downloaded the original from a BBS. The
listing shows where I modified the original. I also cleaned up the
format and coding a little and put the ARexx instructions in caps
for readability.

It would be instructive to look at this macro as a good example
of a really clever use of ARexx in a DOpus macro and also for
learning how to improve ARexx scripts you may find on a BBS. The
file is named LhArc_ext.dopus ver 1.11 by KjPetlig. For proper
documentation, I call my corrected version listed here as $VER:
1.12, since I modified it enough to warrant a different version
number. Note the syntax of adding a version information to your
ARexx programs. On a command line

version REXX:LhArc_ext.dopus

will display ‘‘1.12’’ if the above syntax is anywhere in the file. The
listing shows the history of the program, and even includes a Help
file for appending to the Directory Opus Help file,
DirectoryOpus.HLP in your S: directory.

The syntax for a DOpus Help file entry is to put an asterisk
next to the button or gadget name on one line. Then put in as many
lines of help as you need and finish off with a ‘‘^’’ character at the
end. Help entries are all stored in an ordinary text file. I always
write a help file for my ARexx DOpus scripts because I do not
always remember what they do months later. I like the idea of
including a ready made help file in the program itself. By the way,
if you are writing ARexx programs that operate from the CLI or
Shell, you may include help in the program file and test for an
argument character of ‘‘?’’. If the ARexx program has the argument
‘‘?’’, then the program would display its own help file or template.
This follows AmigaDOS format.

For instance, if you have a program called DOIT.rexx and
from a command line you type:

rx doit ?

then if the first part of the program is coded,
/* DOIT.rexx with help */
ARG help

IF help=’?’ THEN DO
 /* display help lines...*/
 SAY ‘help line 1...’
 SAY ‘template maybe...’
 SAY ‘etc...’
END
/* rest of program */

I changed the name of the DOpus button to LHAdisp instead
of ‘‘LhArc_ext’’ because I thought that it was more mnemonic.
Whatever you name your button, you want to set it up as an ARexx
program in the DOpus configuration window. Use no flags and put
in the DOpus line argument {f} after the program name to get the
selected archive as an argument for the program. The operation is
simple. Select an archive ending in ‘‘.LHA’’ or ‘‘.LZH’’ in either
DOpus window. Click on the button named LHAdisp and a list of
all files and directories in the archive will appear in the same
window as the selected archive. You may penetrate subdirectories
by selecting a directory name and clicking on the button again. The
directory will be expanded. Note: you cannot travel back up the
archive tree by pressing parent as you ordinarily would.

The program uses the same window that was there before and
removes the names of its entries (but not the files they represent!),
so if you click on parent, you get the parent of the directory whose
entries were removed. What you see is the contents of a temporary
file T:REXXtemp for holding the archive names. The LHA program
itself has options for displaying the contents of an archive, and
ARexx has the ability to execute AmigaDOS commands. The author
took this one step further, displaying the results of the special LHA
call in a DOpus window. There are of course further changes some
of you may want to make. For instance, you may want to put the

Inside ARexx
A Directory Opus LHA Display Utility

by Merrill Callaway

ConfigOpus
A handy and ingenious ARexx
macro for Directory Opus (DOpus)
that allows you to view the
contents of LHA or LZH
compressed archives and select
which files/directories you want to
decompress, using only mouse
clicks.

Getting more from Directory Opus
with an ARexx Utility

MAY 1995 45

contents of the archive’s file table into a separate buffer instead of
removing the file entries from the current buffer. If you were
viewing a lot of archives, this would let you keep each archive list
in a separate buffer.

The way the program is written now it displays the file/
directory contents of one archive at a time in the active window. If
you choose not to extract anything and rescan the source window,
the file names in the directory that was there originally reappear. If
you decide to extract one or more of the displayed files, select them
and press the same button. The files will be extracted and put into
the destination window (the non-active window), and the source
window will be rescanned to show the original contents. Extracted
files will really be in the destination directory, unlike the archive
file names which are only displayed in the source window. Let’s
take a look at the listing.

Get the Information from DOpus
First, we tell the program where to find LHA, a freely

distributable archive utility available from BBSs and on Fred Fish
CD. I have my copy in C:, but if you keep LHA somewhere else,
change the line to reflect your path. An OPTIONS RESULTS line
informs ARexx that we want to have the special variable RESULT
assigned a value after any function calls.

The address ‘DOPUS.1’ instruction is not necessary because
the program runs from a DOpus window, and the address is
implicit. I commented it out in case you have multiple copies of
DOpus running, where the DOPUS.n address needs to be the open
document address. The ID_Comment variable is assigned a value
‘**Extracted_from:’ to be attached as a file comment later on. This
comment string is how the program can tell whether you are
viewing an archive’s file names for the first time, or de-archiving
selected files:

IF (the file spec does NOT contain this string) THEN (generate display of
names); ELSE (extract the selected files).

The test is performed by the ARexx function INDEX(). If a string is
found inside another one, then INDEX() returns a non-zero
number, the offset of the string; otherwise INDEX() returns zero.

DOpus Window Handling
First, however, the program needs to get the window and file

information from DOpus. This part was where the author, KjPetlig
made some mistakes. The DOpus command STATUS 3 returns the
active window: 0 is the left window, 1 is the right window. We let
the token, window, take this value (0 or 1). Therefore the destina-
tion window, destwindow is the absolute value of (window-1).

The ARexx function ABS() comes in handy here. ‘‘STATUS 13
window’’ sets the path to that of the active window, and path is
assigned the RESULT. We use virtually the same code to set
another path to that of the destination window and assign this
result to destpath.

Next we need to get rid of a flaw in DOpus which chokes on
the device name with spaces, ‘‘Ram Disk:’’ The program tests both
path names and adjusts their names accordingly. The LEFT()
function looks for a matching ‘‘Ram Disk’’ in the first 8 characters.
Then a PARSE on a pattern ‘‘:’’ removes the pattern and assigns the
remainder of the path to drest. Then a simple concatenation
reassembles our path as ‘‘RAM:’’||drest. This fix removed the
problem of extracting to the Ram Disk device.

GETNEXTSELECTED is a DOpus command to return the next
selected file name in the RESULT variable which gets assigned to
ArcNm. Only the first file name is returned. This is always the case

unless the entry is deselected by another command. Later in the
program, the multiple selections are each deselected during a
SELECTFILE command in a loop, so the GETNEXTSELECTED that
occurs after it does get the next file in the list.

Now the program tests ArcNm. If it is 0 then there were no
selected files, and the program exits after posting a message to this
effect in the top bar of the DOpus window (TOPTEXT is the DOpus
command to do it). If there is a file selected, another DOpus
command, FILEINFO gets the file information from the selected
file. The token, FInfo gets this result. Now the program tests FInfo
to see if the string represented by ID_Comment is in it. If not, then
ID_Index is zero and we are in ‘‘display the archive files’’ mode. If
ID_Index is non zero then the program control skips to the ELSE
DO clause near the bottom to generate a different LHA command
string for AmigaDOS to process.

Assume it is the first time through. Then ID_Index is zero. I
changed a token here for clarity. The author was using the same
token from before, and although that is OK by ARexx, it is not
nearly as readable. All the program is doing here is finding out if
we have a ‘‘.LHA’’ or a ‘‘.LZH’’ file. The UPPER() function converts
to upper case the RIGHT 4 characters of the file name, ArcNm, and
tests them directly. If we don’t have a compressed file, then the
program again exits and posts a message.

A Quick Fix for a Glitch
If everything is OK so far, we are ready to list the files in the

archive, so a TOPTEXT says ‘‘Reading LhArc Archive...’’. Next I
had to fix what the author calls ‘‘strange things happening’’. He did
not know how to set the windows in DOpus properly. I used code
from another of my programs to perform the first part of the
window operations in DOpus, so here I make a connection from my
code, which uses the variable ‘‘path’’, to Mr. Petlig’s which uses the
variable ‘‘ArcPath’’. I simply assign ArcPath=path. This is easier
than changing all his code and possibly making a typo.

I left the code less than perfect to show you how you can
quickly fix a program that is not behaving correctly by patching in
code you know is working properly. A ‘‘STATUS 6 window’’
command returns how many entries are in the active window. The
RESULT is the number of entries. Since the very next instruction
uses RESULT directly, we can ‘‘Do RESULT’’, but this isn’t always a
good habit! RESULT is reset after every command. You MUST use
it immediately if you are to use it directly. So if there are 16 entries
in the window, then the program will ‘‘do 16’’ iterations. First it
uses GETENTRY 1 to get the first entry. Then it uses
‘‘REMOVEFILE result’’ to remove the file by name (name is in the
result variable). Now we have a clean window to work with. The
files are not actually removed, only the display of their names is
removed.

LHA as an AmigaDOS Command
The line:
ADDRESS COMMAND LhAPath||’LhA >t:RexxTemp vv ‘ArcPath||ArcNm

makes a table of the files inside the archive. The redirection ‘‘>’’
sends the output to a file T:RexxTemp instead of to the screen
output, STDOUT. Here typical output:

LhA Evaluation V1.32 - Copyright (c) 1991,92 Stefan Boberg.
All rights reserved. Not for commercial use.

Listing of archive ‘assignx12a.lzh’:
Original Packed Ratio Date Time Atts Method CRC Host OS L U
-------- ------ ---- -------- -------- -------- ------ ---- --------
AssignX.info
 468 202 56.8% 11-Mar-91 21:30:48 --p-rwed -lh1- 8128 Unknown 0 makefile
 404 175 56.6% 06-Apr-91 19:40:56 ----rwed -lh1- 03FB Unknown 0 NoReq.c

46 AMAZING COMPUTING

 1885 766 59.3% 06-Apr-91 19:46:38 --p-rwed -lh1- 3177 Unknown 0 NoReq.Docs
 286 213 25.5% 11-Mar-91 22:33:08 --p-rwed -lh1- 1AC6 Unknown 0 NoReq.info
 468 202 56.8% 11-Mar-91 22:43:04 --p-rwed -lh1- 8128 Unknown 0 AsmBit.a
 457 226 50.5% 06-Apr-91 19:52:56 --p-rwed -lh1- 4BC9 Unknown 0 NoReq
 3052 2030 33.4% 06-Apr-91 19:56:34 --p-rwed -lh1- FB73 Unknown 0 AssignX.c
 3148 1291 58.9% 22-Apr-91 13:37:28 ----rwed -lh1- 8870 Unknown 0 AssignX
 4352 2836 34.8% 22-Apr-91 13:37:48 --p-rwed -lh1- E86D Unknown 0
AssignX.Docs
 3815 1994 47.7% 22-Apr-91 13:36:06 --p-rwed -lh1- 9844 Unknown 0
-------- ------ ---- -------- --------
 18335 9935 45.8% 20-Aug-92 09:42:00 10 files

Operation successful.
The next function is ‘‘CALL

OPEN(‘LhaList’,’t:RexxTemp’,’R’)’’ to open the temporary file for
reading. Mr. Petlig made some usage errors here, but two mistakes
added up to a program that works! First, he did not quote the name
LhaList, so ARexx was changing it to LHALIST. This is a logical
name for a file, and it is CASE SENSITIVE! But since he did not
quote it anywhere else, ARexx converted unquoted strings to upper
case, and there wasn’t a problem. However, this could have proved
very confusing to beginners, particularly if they quoted ‘LhaList’.

The best ARexx form is to ‘quote’ logical names to call
attention to the fact that they are case sensitive even if they are all
in caps. I corrected the listing to reflect good form. KjPetlig also
failed to CALL the OPEN() function. Functions should always be
CALLed, set equal to something, or used in an expression directly.
Since DOpus doesn’t provide a console unless you explicitly open
one, not CALLing OPEN() would go unnoticed and would not
cause the program to fail, but again, always use the correct form.

The program reads the open file until it finds 8 hyphens at the
left, skipping the heading. Then it reads lines until it again
encounters the hyphens to signify the end of the report. In between,
it reads a line and then parses out the relevant information. I
replaced the author’s template targets he called ‘‘garbage’’ with
periods (.) which are NOT assigned. He had used ‘‘garbage’’ for
unwanted target tokens, but explicit tokens are still assigned a
value, slowing down the program and using memory. We want to
parse the file spec into: file size, date, time, and protection bits.

Date Conversions
The program needs to convert from something in the format

date = 12-Nov-94

to the number of seconds since 01 Jan 1978, day zero on the Amiga,
in order to write a file spec back into the DOpus window. Mr. Petlig
makes clever use of the INDEX() function. He sets up a string that
contains all months as abbreviated in the system. Then he found the
position of the ‘‘month’’ substring, SUBSTR(date,4,3), in the long
string. SUBSTR() is the substring of the token, date, starting at
position 4 and going for 3 places. I like the parse instruction much
better than using SUBSTR(), so I parsed the date string on the
patterns, ‘‘-’’, assigning day month year to their equivalents from
the string. Parsing on a pattern removes the pattern from the string.

At any rate, month = ‘‘Nov’’ and has index = 31. Add 2 and get
33. Now we divide by 3 (in the line below) and get Nov as month
11. Very clever! The line below also builds up Date as a concatena-
tion of strings and functions in an expression that evaluates to
19941112 in our example. Another advantage of using parse instead
of multiple substrings is that we get the year as well.

Mr. Petlig states in one of his notes that he had had trouble
with dates in the next century. A simple test of year lets us set
century=20 or century=19. I replaced his code here, too. In our
example, date=19941112, the date in ‘‘sort’’ format. Seconds is
calculated from the ARexx DATE(i,date,s) function. The option is i
or days from day zero, date is the sorted form of the date above,

reformatted from the temporary table, and s means that the format
of the date argument is in sorted or numeric format. It’s a bit
confusing that in DATE(), i and s may be either options or formats
(they are the only two formats, but not the only two options). The
syntax of DATE() is DATE(option,date,format).

Note that format must match the format of date: If date is in
form YYYYMMDD, then format must be ‘S’; if date is in days from
day zero format, DDDD, then format must be ‘I’. Option deter-
mines the format of the returned value, in this case days since day
zero. Finally the result in number of days since day zero is
multiplied by the number of seconds in a day, 86400 and the
expression evaluates to the file date expressed as the number of
seconds since day zero.

Finally, the ADDFILE DOpus command adds the file back into
the window. The expression evaluates into the filename, size, type,
seconds, comment, protection, reserved, and show (see your
DOpus Command docs for more on this command). The program
continues to read lines from the table, performing a test for a colon
(:) in position 1. Apparently some archives have a throw away line
with this syntax. Finally the loop ends.

Now the table file is closed. I corrected Mr. Petligs code. He
did not ‘‘call close()’’, he merely put in ‘‘close()’’ which is bad form.
In a command line interface this will cause an error. Deleting the
temporary file and a display of what to do next in the top bar
complete the archive display part of the program.

Expanding Archive Files
If the control enters the ELSE DO segment, then we need to

expand selected files. FInfo is the rest of the line after the ‘‘**Ex-
tracted from:’’ (17 characters long) part of the file display in the
window. It is the archive file name plus the protection bits. FileNm
is the complete archive file spec. The protection bits are 10
characters long, so they are trimmed off the file spec, while the path
is added to the left of the file name.

Now in a loop, one long command string containing all the
selected files is built up from its components, and tested each time a
filename to be extracted is concatenated to it, to see if the command
will be longer than 254 characters. If it would be longer than 254,
the new extract file is not concatenated and the command is
executed in two or more parts, rebuilding a new command string
after each execution. The string is built up and tested for length in
the form:

LhA x archivefile extractfile1 [extractfile2...] destinationpath

This command executes in AmigaDOS when preceded by the
ADDRESS COMMAND ARexx instruction. As long as ArcNm does
not equal zero, (there are selected files left), a loop continues to
concatenate the selected files from the archive file to the long
command string. A long string is used to speed up the extraction, as
an individual extraction for each file would be very slow. After the
loop, a RESCAN of both windows completes the program. This is a
clever program both in concept and in its uses of DOpus commands
and the ARexx function, INDEX().

Please Write to:
Merrill Callaway

c/o Amazing Computing
P.O. Box 2140

Fall River, MA 02722-2140

MAY 1995 47

/*
** LhArc_ext.dopus
**
** $VER: 1.12 by KjPetlig modified by Merrill Callaway
**
** Directory Opus v4.11 script to show files in a LhArc file and
** extract on request. Make a button called LHAdisp and have
** it call LhArc_ext.dopus and make sure the button that normally says
** executable is changed to ARexx.
** You must have LhA v.1.32 (or compatible versions).
**
*/

LhAPath = ‘C:’

/*
Here is an addition for your help file:

*LHAdisp
This custom function will display all of the compressed files inside of a
.LHA or .LZH and allow you to extract individual ones. Select the .LHA or
.LZH file you wish to view and then press this gadget. The files inside
the
archive will appear in the window. You can then select multiple files and
press this gadget to extract the files you want, they will be extracted to
the directory in the other window.̂

 History List - can be deleted for speed!

 ver 1.12 Modified/fixed by Merrill Callaway,
 author of THE ARexx Cookbook:
 Fixed problem with left/right windows, and problem if
 ‘‘RAM DISK’’ or other directories with a space are selected.
 Also named ‘‘button’’ LHAdisp instead of LHA ext
 (in Toptext), CALLed OPEN(), CLOSE() etc. properly.
 Corrected next century date conversion.
 Improved readability of code and string handling.
 ver 1.11 The -f switch of LhA doesn’t work all the time, so I
 fixed it so this program doesn’t get confused.
 Found problem in DirOpus when passing a single quote in
 a filename, don’t know how to get around it!
 Added more plain instructions about LhAPath, set it
 to default to C: instead of my C:Utility/
 Re-Arranged order of header comment
 ver 1.10 Now the LhA command for each and every file extracted
 (I’m sure that was slow for floppy users!), it queues
 up the command to a max of 254 long before execution.
 Checked for no files selected, reports errors
 as ERROR: -=< what it is >=-
 ver 1.02 Added if-then for files dated after year 2000
 (Somebody had done some strange things with
 their clock! I had a file dated 30-Dec-05 !)
 ver 1.01 Had to suppress filenotes listing of LhA
 Changed LhArc’s to LhA, (even renamed my
 LhArc correctly in my C: directory :-)
 Put a place in for the correct LhA path to
 kill an intermittent bug.
 Saw KAT’s changes and incorporated one (rescan source!)
 Fixed for different versions of LhA, discards correct
 number of header lines.

*/

OPTIONS RESULTS

/* ADDRESS ‘DOPUS.1’ */ /* unnecessary */

ID_Comment = ‘**Extracted_from:’

/*
** Modified/fixed by Merrill Callaway
** Fixes problem with a space in path name.
*/

/* Get the active window. */
STATUS 3
window=RESULT
destwind=ABS(window-1)
/* 0 or 1 */

/* Set the path name to active window path. */
STATUS 13 window
path=RESULT

/* Set the path name to the destination window. */
STATUS 13 destwind
destpath=RESULT

/* Get rid of path(s) with a space in it! */
IF LEFT(path,8) = ‘Ram Disk’ THEN DO
 PARSE UPPER VAR path ‘:’rest
 path=’RAM:’||rest
 END

IF LEFT(destpath,8) = ‘Ram Disk’ THEN DO
 PARSE UPPER VAR destpath ‘:’drest
 destpath=’RAM:’||drest
 END

/* End Callaway fix. */

GETNEXTSELECTED
ArcNm = RESULT /* file name of next selected */
IF ArcNm = 0 THEN DO
 /* Callaway addition below */
 /* rescans window if nothing selected. */
 RESCAN window
 TOPTEXT ‘No file was selected!’
 EXIT
END

FILEINFO ArcNm
FInfo = RESULT
ID_Index = INDEX(FInfo,ID_Comment)
IF ID_Index = 0 THEN DO
 /* Callaway: rename ArcPath as ArcExt for less confusion. */
 ArcExt = UPPER(RIGHT(ArcNm,4))
 IF ArcExt ~= ‘.LZH’ & ArcExt ~= ‘.LHA’ THEN DO
 TOPTEXT ‘ERROR: Improper extension!’
 EXIT
 END
 TOPTEXT ‘Reading LhArc Archive....’

 /* Callaway mods follow: */
 ArcPath = path
 STATUS 6 window /* Find out how many entries to remove... */
 /* End Callaway mods. */

 DO RESULT /* Clear window to work with... */
 GETENTRY 1
 REMOVEFILE result
 END

 ADDRESS COMMAND LhAPath||’LhA >t:RexxTemp vv ‘ArcPath||ArcNm
 CALL OPEN(‘LhaList’,’t:RexxTemp’,’R’) /* logical names quoted! */

 /* Read to end of header. */
 DO UNTIL left(FileNm,8)=’--------’
 FileNm = READLN(‘LhaList’)
 END

 /* First line of file descriptions. */
 FileNm = READLN(‘LhaList’)

 /* Create a file list of all the files in the LhArc file. */
 DO UNTIL LEFT(FileNm,8)=’--------’
 FileSpec = READLN(‘LhaList’)
 /* Improvement to template by M.Callaway */
 PARSE VAR FileSpec FileSz . . date time prot .
 /* Improvement to date calculation by M.Callaway. */
 PARSE VAR date day ‘-’ month ‘-’ year
 IF year<78 THEN century=20;ELSE century=19
 /* Make a DOpus date from a LhArc one */
 month = INDEX(‘JanFebMarAprMayJunJulAugSepOctNovDec’,month)+2
 date = century||year||RIGHT(month/3,2,’0')||RIGHT(day,2,’0')
 /* end of Callaway date mod */

 seconds = DATE(‘I’,date,’S’) * 86400
 DirStat = ‘-1’ /* A file not a directory. */
 IF FileSz = 0 THEN DirStat = 1 /* A directory not a file. */
 ADDFILE FileNm FileSz DirStat seconds time||ID_Comment||ArcNm prot
‘0 1’
 FileNm = READLN(‘LhaList’)
 IF LEFT(FileNm,1)=’:’ THEN FileNm = READLN(‘LhaList’)
 END

 CALL CLOSE(‘LhaList’)
 ADDRESS COMMAND ‘delete t:RexxTemp’
 /* Callaway mod */
 TOPTEXT ‘Now select a file and hit |LhAdisp| to extract’
 END

ELSE DO
 /* Archive file and protection bits information. */
 FInfo = SUBSTR(FInfo,ID_Index+17)

 /* Callaway mods */
 /* Get only file spec w/o prot bits. */
 FileNm = path||LEFT(FInfo,LENGTH(FInfo)-10)
 ArcPath = destpath
 /* End Callaway */

 ComString = LhAPath||’LhA x’ FileNm
 DO UNTIL ArcNm = 0
 SELECTFILE ArcNm 0 1 /* 0=unselect file; 1=update display. */
 /* Build up a command string to a max of 254 characters. */
 IF LENGTH(ComString ArcNm ArcPath)>254 THEN DO
 address command ComString ArcPath
 ComString = LhAPath||’LhA x’ FileNm
 END
 ComString = ComString ArcNm
 GETNEXTSELECTED
 ArcNm = RESULT
 END
 ADDRESS COMMAND ComString ArcPath
 RESCAN 1
 RESCAN 0 /* Well, I originally kept this line out on purpose! */
END
EXIT 0 ·AC·

Listing

